Thứ Hai, 19 tháng 3, 2012

McLaren MP4-12C, 2011

 
 
 
 McLaren MP4-12C, 2011

The McLaren MP4-12C is revealed as the first in a range of high-performance sports cars from McLaren Automotive, the independent car division based at the McLaren Technology Centre in Woking, England. The 12C, and future models within the range, will challenge the world's best sports cars, benefiting from the expertise and virtuosity of the McLaren Group.

Twenty years of sports car design, engineering and production combined with inspirational success in Formula 1 have driven Ron Dennis, McLaren Automotive Chairman, to announce his plans for the ultimate line-up of technology-led and customer-focused performance cars for the 21st century. The rules in the sports car world are about to be re-written.

Through a rich modern history, McLaren's automotive division has already built the world's most critically acclaimed supercar, the McLaren F1 (1993-1998) and the world's best-selling luxury supercar, the Mercedes-Benz SLR McLaren (2003-2009). McLaren Automotive now looks to the future with a new range of revolutionary sports cars.

At its heart, the McLaren MP4-12C features a revolutionary carbon fibre chassis structure, the Carbon MonoCell: the first time a car in this market segment is based around such a strong and lightweight racing car engineering solution and the first time any car has ever featured a one-piece carbon fibre structure.

The first car from the new company, the McLaren MP4-12C, is a high performance two-seat mid-engine model in the 'core' sports car market segment for cars costing between £125,000 and £175,000. The 12C is pure McLaren, featuring no carryover parts from any other car, and will be produced by McLaren in the UK. It goes on sale through a dedicated, worldwide retailer network in early 2011.

The Inside out
The heart of the new car is the Carbon MonoCell. McLaren pioneered the use of carbon composite construction in the 1981 Formula 1 MP4/1 model and set a trend that all Formula 1 teams have followed. The company brought carbon fibre to road cars for the first time with the 1993 McLaren F1 and then built on this experience with a carbon fibre chassis and body on the SLR manufactured to the same exacting standards, but in higher volumes.

The 12C changes this by introducing the advantages of carbon composite - light weight, high strength and torsional rigidity, and longevity - to a more affordable sector through its revolutionary engineering as a one-piece moulding. Never before has a carbon fibre chassis been produced this way.

The 12C MonoCell not only brings dynamic benefits, but also offers fundamental engineering opportunities that form the basis of the car's unique character. It has been designed to allow a much narrower structure overall which in turn contributes to a more compact car that is easier to position on the road and more rewarding to drive.

Not only is the 12C unique in its class by offering carbon technology, it also has the highest specific power output as well as extraordinary power- and torque-to-weight ratios. Furthermore, the Proactive Chassis Control system offers groundbreaking handling and ride comfort while an intense focus on occupant packaging offers new levels of comfort and everyday usability.

Antony Sheriff explained. "With the 12C we are redefining the relationship between performance and practicality, as well as performance and efficiency, achieving leading positions in both. We have designed this car from the inside out. We have a saying in McLaren - 'everything for a reason' and the 12C will surprise people in many ways.

Pure McLaren
All the parts of the McLaren MP4-12C are bespoke and unique to this car. Everything from the engine right down to the tailor-made switches and buttons is pure McLaren: nothing has come from another manufacturer's parts bin.

The 12C is powered by a bespoke McLaren 'M838T' 3.8 litre, V8 twin-turbo engine producing around 600bhp, driving through a McLaren seven speed Seamless Shift dual clutch gearbox (SSG). It is targeting not only new standards for power and performance in its sector, but also class-leading fuel economy and CO2 emissions; supported by McLaren's experience of active aerodynamics to aid cooling, grip, handling and road holding.

Adding lightness
Weight is the enemy of performance in every area of car design. It affects acceleration, speed, handling, fuel consumption and CO2 emissions - everything. McLaren Automotive engineers pursued weight saving obsessively. 
 For example:
  •  The Carbon MonoCell not only reduces the weight of the structure but also allows for the use of much lighter weight body panels.
  •  The close position of the driver and passenger allows a narrower, lighter body while giving improved visibility with a clearer perception of the car's extremities.
  •  Brakes with forged aluminium hubs save 8 kg and weigh less than optional carbon ceramic brakes.
  •  Lightweight exhaust pipes exit straight out the rear of the car, minimizing their length and weight.
  •  Airflow-assisted Airbrake deployment dramatically reduces weight of the Airbrake activation system.
  •  Small, compact downsized engine coupled to lightweight compact SSG minimizes vehicle length, weight and polar moment of inertia.
  •  Significant weight was pared off the alloy wheels through intensive Finite Element Analysis of wall thicknesses.
  •  The engine cooling radiators were mounted at the rear, as close to the engine as possible, to minimize the pipework, the fluids contained within them, and therefore weight. They were also mounted in car line to minimize vehicle width.
Design: everything for a reason
The McLaren MP4-12C design follows similar principles to McLaren's Formula 1 cars, and the legendary McLaren F1, where everything is for a reason and all lines, surfaces, and details are designed with a job in mind as much as styled. This ensures that the 12C communicates its engineering through its styling and will remain timeless as a piece of automotive design.

The market opportunity for McLaren
The market for high performance sports cars has grown substantially since the turn of the century. McLaren divides the market into segments that encompass both more comfort-orientated GT cars and the hard-edged supercars for road and track use.

The 'core' segment runs from around £125,000 to £175,000 featuring such cars as the Ferrari 458, Lamborghini Gallardo, Porsche 911 Turbo, Bentley Continental GT and Aston Martin DB9. A second segment is the 'high' category with prices ranging from £175,000 to £250,000 and consists largely of front-engined GT cars such as Ferrari 599 GTB and Ferrari 612, with just one mid-engined contender, the Lamborghini Murcielago.

The final segment is the 'ultimate' group, a sector more or less initiated by the McLaren F1 in 1993 and now populated by a select group of cars including the Mercedes-Benz SLR McLaren, Bugatti Veyron, and cars from the likes of Pagani and Koenigsegg that followed legends such as the Porsche Carrera GT and Ferrari Enzo. In 2011, McLaren will bring technology and performance exclusive to this 'ultimate' sector into the 'core' segment.

The name of the new McLaren sports car is MP4-12C.
What does this signify? As one might expect at McLaren, everything has a purpose and the nomenclature is no exception.
  •  'MP4' has been the chassis designation for all McLaren Formula 1 cars since 1981. It stands for McLaren Project 4, resulting from the merger of Ron Dennis' Project 4 organisation with McLaren.
  •  The '12' refers to McLaren's internal Vehicle Performance Index through which it rates key performance criteria both for competitors and for its own cars. The criteria combine power, weight, emissions, and aerodynamic efficiency. The coalition of all these values delivers an overall performance index that has been used as a benchmark throughout the car's development.
  •  The 'C' refers to Carbon, highlighting the unique application of carbon fibre technology to the future range of McLaren sports cars.

The elements of this name represent everything that the McLaren MP4-12C stands for:
  •  'MP4' represents the racing bloodline
  •  '12' represents the focus on complete performance and efficiency
  •  'C' represents the revolutionary Carbon MonoCell
A carbon fibre heart
Light weight and performance are defining philosophies at McLaren. But outright power alone is of little significance if a car's weight saps output or if that power is unmanageable and compromises the driving experience or results in unacceptable emissions.

Fundamentally, it is critical to keep weight as low as possible. Increased customer demands for safety and advanced features all mean that shaving weight is ever more difficult. However, at McLaren saving weight remains a passion and at the heart of the McLaren MP4-12C is a carbon fibre composite chassis: the Carbon MonoCell.

The McLaren's Formula 1 carbon fibre technology then offered the company the opportunity of applying its expertise to road car applications. The first ever road car to be constructed of this material was the McLaren F1 produced in 1993, albeit in small numbers. The F1 was followed by the Mercedes-Benz SLR McLaren that also shared this rare expertise.

Only a handful of other cars in the market offer such technology today and all of them lie in the 'ultimate' segment. No manufacturer has brought the advantages of carbon composite technology to a more affordable sector of the market. But the 12C does, through engineering passion and a relentless pursuit of efficiency.

So, McLaren did it first with the F1, the world's fastest car for many years, then in the highest volume with SLR, which almost doubled the volume of the next highest produced carbon fibre-based high performance sports car by selling over 2,100 units. Now, through revolutionary one-piece moulding of the MonoCell, McLaren brings a carbon composite chassis down to the 'core' category, where currently only traditional metal structures are offered.

The advantages this technology brings are light weight, high torsional rigidity, a very strong safety cell, low perishability, ease of repair and extreme dimensional accuracy.

The 12C MonoCell weighs less than 80 kg. Carbon fibre contributes to the car's low overall weight and it forms the structural basis for the whole car. The tub's torsional rigidity is considerably stiffer than a comparable alloy structure.

This inherent lack of flex means the unique front suspension system, which is mounted directly onto the MonoCell, requires less compromise for flex of the suspension itself. Therefore, it is easier to develop the unique balance between fine ride and precise handling that McLaren has targeted. The MonoCell also offers greater occupant safety. It acts as a safety survival cell, as it does for a Formula 1 car.

Carbon composites do not degrade over time like metal structures that fatigue. One is able to get into a 15-year-old McLaren F1 and there is none of the tiredness or lack of structural integrity that afflicts traditional cars that have suffered a hard life. The 12C will feel as good as new in this respect for decades.

And in the event of an accident, the light weight aluminium alloy front and rear structures are designed to absorb impact forces in a crash and can be replaced relatively easily. Aluminium extrusions and castings are jig welded into the finished assembly and bolted directly to the MonoCell. Cars with full aluminium chassis use their structure to absorb and crumple on impact, which implies more fundamental damage (and expense) to the whole structure, including the passenger cell, in a major accident.

Powertrain: pure McLaren
The McLaren MP4-12C is powered by a twin-turbocharged, 3.8 litre 90° V8 engine - the 'M838T'. This marks the start of a new era in 'core' segment sports cars - smaller capacity, lighter weight, higher efficiency and more economical power units. The engine has the highest specific power output in its segment which, when allied to its low weight carbon composite chassis, delivers exemplary power- and torque-to-weight ratios.

'M838T' is a unique McLaren power unit, developed specifically for the 12C. It is compact, lightweight, very stiff, and offers an uncompromising combination of very high performance and good driveability, with excellent economy and CO2 emission values.

Taking power and emissions in combination (measured by its horsepower to CO2 ratio), the 12C delivers its power at greater efficiency than any other car on the market with an internal combustion engine, including hybrids.
The McLaren engine revs to 8,500rpm, has quick transient throttle response and delivers its abundant torque throughout the rev range. A staggering 80 per cent of torque is available at below 2,000rpm, ensuring great driveability and no need to floor the throttle to deliver performance.

And it delivers a great soundtrack to highlight the engine's performance, flexibility and driveability. The sound of the engine has been thoroughly engineered through exhaust manifold design and tuning of the exhaust and intake systems to deliver a unique engine note.

The high level exhaust pipes exit through a mixing box, rather than a conventional and heavy silencer box. All parts of the exhaust system up to the mixing box feature sandwich layer heat-shielding that helps reduce heat from the engine bay. In just an 18mm gap, exhaust gas temperatures reduce from 900°C to 300°C.

The engine drives the rear wheels through two wet clutches and a McLaren-developed seven speed Seamless Shift dual clutch gearbox (SSG).

The Seamless Shift technology offers variable programmes ranging from 'normal' for road use and 'sport' for quicker changes still, right up to a lightning quick high performance mode. In addition an 'automatic' mode, 'launch control' and 'winter' modes can be selected, the latter changing all electronic functions to suit low friction conditions and delivering maximum driver aid and support. There is no traditional manual transmission offered; the two pedal layout offered further scope to create a narrow, and therefore light, car.

The 12C's SSG is a development on the automated and sequential manual gearboxes with paddle shifts that proliferate in the car market today. The character of the transmission will engage even experienced drivers with its responsiveness and its contribution to the whole dynamic package.

With minimal torque loss, there is none of the lurch, hesitation or unpredictability that characterise traditional automated-manual transmission systems.
Design of the SSG system was driven by a demanding mechanical package that not only reduced weight and improved dynamic control for the entire vehicle, but also delivered driver benefits.

It is lightweight and compact in design and positioned in exactly the best location. The input shaft lies very close to the output shaft to help position the entire powertrain low in the vehicle. Twin secondary shafts ensure any rear axle weight overhang is minimised and rear crash performance is uncompromised. The bespoke SSG is further complemented by an entirely new control system.

The system reduces weight and benefits packaging targets, but also ensures that driving programmes and shift strategies take the driver's own inputs and uses them to directly control the engine's torque and speed to deliver performance, economy or comfort as requested.

Gears are changed using a Formula 1 style rocker shift that pivots in the centre of the steering wheel. It is actuated on either side of the steering wheel (pulling right changes up, pulling left down).

As with the McLaren Formula 1 car, a shift can be actuated either by pulling or by pushing on the rocker. The rocker moves with the steering wheel, rather than being mounted on the steering column, so that if a gearchange is needed while lock is being applied the driver does not have to fumble around to change gear.

The rocker itself incorporates an innovative feature created by McLaren engineers called Pre-Cog. The name stands for pre-cognition, literally 'foreknowledge'. The rocker on the 12C has two positions with a slightly different haptic (or feel) for each. The driver applies first pressure to the rocker and it informs the gearbox to get ready to swap ratios, thereby saving time - latency - between the message being sent and the gearbox being primed to act. The second pressure confirms that the gear should be changed and the torque handover is completed in milliseconds.

In practice the latency of the shift is virtually zero, the actual gear change time is very fast and the level of impulse can be varied according to the gearbox mode. Considering that McLaren was the first Formula 1 team to introduce seamless shift gearchanges into motor racing, it was a natural step to develop such a bespoke transmission to its sports car project.

Chassis: Proactive control
The suspension for the McLaren MP4-12C breaks new ground, offering hitherto unseen levels of roll control and grip (an almost flat cornering attitude, depending on the programme selected).

Although such track-like responses would normally imply a rock-hard ride, the 12C delivers compliance and ride comfort more akin to an executive saloon car. The mix of occupant cosseting and sporting potential is truly unique. The 12C offers the driver both class-leading ride comfort and class-leading performance.

The whole chassis package produces not only a unique relationship between ride and handling, but also astonishing lateral grip and outstanding traction. The 12C is poised and balanced whether negotiating high or low speed corners, during direction changes, under heavy or light braking and on tightening or opening corners.
The trick behind blending such opposing objectives lies in the innovative Proactive Chassis Control system, uncompromised geometry, and weight distribution.

The suspension is based on double wishbones with coil springs. The dampers are interconnected hydraulically and provide adaptive responses depending on both road conditions and driver preference.
The Proactive system features adjustable roll control which replaces the mechanical anti-roll bars that have been a standard feature of road cars since time immemorial. It allows the car to maintain precise roll control under heavy cornering while decoupling the suspension in a straight line for excellent wheel articulation and compliance.

There are three suspension modes that are selected on the Active Dynamics Panel. As with the powertrain adjustment, there is a 'normal', a 'sport' mode and a high performance mode which adjusts numerous parameters in the system.

Not only is the Proactive suspension a unique application that delivers absolute benefits to driver and passenger, but it is also another example of McLaren's drive to achieve all-round performance goals from core engineering targets.

The powertrain packaging also contributes to the 12C's handling prowess.
The engine is mounted low down in order to lower the centre of gravity while the radiators are rear-mounted and reduce weight by saving on long piping to and from the engine (and the fluids they would hold). The value of rear-mounted radiators is key to the 12C's handling and balance. The more weight that can be concentrated within the wheelbase and towards the centre of gravity, the lower the polar moment of inertia, thereby improving corner turn in.

Brake Steer manages the tendency of a car to wash out and brings its nose back on line. It assesses the steering angle to determine the driver's intended course and applies the inside rear brake to increase yaw rate and resume the desired course.

The system also works on acceleration out of a corner when the inside rear has a tendency to spin, allowing the driver to put power down more quickly. It controls what a limited slip differential would do and obviates the need for such a complex and heavy unit, thus saving more valuable kilos.

The standard brakes for the 12C reduce overall vehicle and unsprung mass. McLaren has developed a composite braking system that uses a forged aluminium bell that attaches to the cast iron disc. This solution maintained the excellent brake feel of a cast iron disc while saving 8 kg. Carbon ceramic brakes will be available as an option, offering fade-free braking performance during high performance driving, but the standard composite brake system is actually lighter than the larger carbon ceramic units.

The design of the standard cast alloy wheels (19" front, 20" rear) was driven by McLaren's light weight objectives: the light weight styling was agreed in concept, then the wheel was tuned using Finite Element Analysis to take a further 4 kg out of the wheels. Bespoke Pirelli tyres have been developed in conjunction with McLaren specifically for the 12C.

An array of electronic aids is fitted to the 12C that will assist and protect the less-experienced driver, or when conditions challenge even the best. These include ABS, ESP, ASR traction control, Electronic Brake Distribution, Hill Hold and Brake Steer. The level of intervention varies according to the handling mode selected.

Design: everything for a reason
The McLaren MP4-12C has been designed around a demanding mechanical package that puts emphasis on aerodynamics, compact dimensions, performance and efficiency, practicality and comfort. Although the design of the 12C was driven by aerodynamics, it aims to remain contemporary and elegant throughout its lifetime as well as distinctive among its peers.

Frank Stephenson, McLaren Automotive Design Director, helped finalise the design: "Like most designers it's a boyhood dream to work with high performance sports cars. They are the purest expression of speed and purpose and, with increased consumer demand in this market and environmental aims to the fore, offer designers the ultimate challenge.

The 12C design was therefore led by aerodynamics. At McLaren we have been able to use the Formula 1 techniques and the huge expertise that the company has amassed at the pinnacle of the sport," explained Stephenson.

The overall design theme supports engineering aerodynamic ambitions. Purity of lines then give the car its character. Successful car design is based on proportions and McLaren's styling team, whilst driven by the demands of the purest airflow, honed a mix of concave and convex surfaces that present balanced proportions and a feeling of lightness. Nothing is out of place on the car and surfaces interact smoothly and with purpose; surfaces that are integrated into the whole of the car along two continuous lines that flow round the body.

The front is very low since it does not have to house large engine cooling radiators, two of which are mounted longitudinally at the sides. This offers the added benefit of segment-leading space for storage under the bonnet.

The 12C's face is dominated by large and distinctive air intakes and bi-xenon headlights with LED running lights inspired by the form of the McLaren logo. The McLaren logo itself also graces the bonnet of a car for the first time.

Illumination from the running lights bleeds into three distinctive gills just above the headlamps. The windscreen is deep and low for superb forward visibility and redolent of the McLaren F1: in wet weather it is swept by a single weight-saving pantograph wiper blade, as was the F1.

Stephenson again: "The 12C does not reproduce the F1 design but it unashamedly builds on its functionally-driven engineering and design highlights such as the large, deep windscreen and the low cowl to give the driver good visibility for accurate placement on the road. Any similarities are there for a reason."

From the side, the 12C cannot be mistaken for another sports car. The dominant side air inlets act as turning vanes and help direct cooling air over the side radiators. This shape was designed and optimised using McLaren's extensive computational fluid dynamics capability. Likewise, the scalloped shoulders drive airflow to the airbrake, thereby enhancing its effectiveness in the aerodynamic package.

The other prevailing design characteristics are the dihedral doors (a hereditary gene from the McLaren F1), which has a clear purpose, like every other element of McLaren's design ethos.

The concept of dihedral doors is simply to allow the driver and passenger to get into and out of the car as easily as possible as well as allowing a smaller door opening than would otherwise be necessary.

The simple act of moving the door forward and upwards invites the driver to step across the sill and sit in the car more easily. In tighter parking situations, dihedral doors allow ingress and egress in a situation where another car has parked too closely. In traditional door systems a huge parking space is necessary to permit the doors to open wide enough.

With its single hinge, the dihedral doors offer weight-saving features and are unique to the McLaren brand. As is the unique handle-free door entry system.

The 12C's rear is unique. It has an aggressive, business-like appearance with its downforce-optimised rear diffuser. The exhaust pipes exit high and in the centre of the car and the rear end is open to ensure efficient evacuation of hot air from the engine bay. The engine itself is visible through the top deck. The LED tail light clusters do not dominate the rear and are hidden behind horizontal black bars. They are only visible when illuminated: the two upper bars light up as LED brake lights and turn indicators.

Aerodynamic efficiency drove the 12C's design. High downforce helps maintain traction, cornering ability and stability while low drag aids top speed and acceleration. It has a completely flat underbody and smooth upper body surfaces to yield a highly effective drag coefficient and generate very high levels of balanced downforce at high speed.

A nose splitter gives more downforce at the front while guide vanes near the front and rear wheels help to increase downforce with minimal drag penalty and direct air towards the all-important diffuser at the rear.

The active Airbrake is another innovation that made its debut on the F1 supercar and was also incorporated into the SLR. It deploys hydraulically under braking, or when the driver wants to trim the car for increased downforce by using a switch on the Active Dynamics Panel.

Under braking, a piston operated by transmission hydraulics raises the Airbrake to a certain angle. Once a small amount of wing angle is pushed into the airflow, the centre of aerodynamic pressure forces the bottom of the 'wing' back. In this way, it raises the airbrake to maximum angle using the 'free' airflow rather than relying on another mechanical device.

The Airbrake moves the centre of pressure of the 12C rearwards, whereas it would normally move forward under braking. It improves yaw stability under braking and allows the brakes to work more effectively due to increased downforce. It is also a weight-saving solution that took almost 50 per cent of weight out of the mechanism.

The Inside: it all starts with the driver
Packaging was fundamental to the McLaren MP4-12C design challenge. Externally, the car had to be compact, yet internally it had to offer an unparalleled driver and passenger environment where comfort and driving enjoyment at all levels were not compromised.

But the creativity of the interior design itself aimed to set new standards. The whole focus is on making the 12C cockpit a uniquely comfortable and functional space. The design offers a symmetry that wraps around the occupants and makes them feel not only physically, but also emotionally comfortable.

The interior is extremely space efficient and is designed to accommodate 98th percentile adults in comfort. This has been partly achieved by the 7 inch touch screen telematics system oriented in 'portrait' mode. This is a first for the automotive industry and is more intuitive than 'landscape' orientation - we read down a page and our mobile telephones and other personal information devices are configured this way.

This is one of the many reasons the 12C design is able to buck the trend towards ever wider sporting cars. The innovative information centre provides all normal telematics functions such as audio, navigation and telephony, while providing some new features never before seen in a car. Meridian, the renowned producer of state-of-the-art sound systems, is developing its first ever in-car system for the 12C.

The low cowl gives a full six degrees downward vision from eye height and, importantly, allows the driver a clear view of the front of the car. The view of the top of the front wings, with the highest point positioned directly above the centre of the wheel, also facilitates perfect placement of the 12C in a corner. Rear vision is excellent too and an internal buttress with a rear three-quarter glass provides a clear rearward view.

The steering wheel is probably the most important sensory item for any driver. Apart from the feel and feedback from the front wheels, the actual grip and design of the wheel itself is paramount. The steering wheel is 'clean' - there are no buttons to distract the driver. It also needs to be small and very tactile.

McLaren designers and engineers found the solution to the steering wheel design challenge under their own roof. Having employed an advanced and compact airbag, the steering wheel design was then inspired by McLaren's racing expertise.

The steering wheel grip of the 12C is as technically precise as a McLaren racing driver's wheel.
This is because past Formula 1 championship-winning drivers' grips were modelled and scanned and the most effective feel and thickness of their wheels was replicated for a high performance road car.

Like the McLaren F1, the driver has controls on both sides, which allows for a rational positioning of switches:

  •  Climate controls on each door console
  •  Telematics on the upper centre console
  •  Active Dynamics Panel on the middle centre console
  •  Transmission and minor controls on the tunnel console
  •  Trip computer and cruise controls on steering column
As such, all groups of controls have their own place and are accessible within a hand's distance from the steering wheel. The instrument cluster has a large central tachometer and digital speed readout. Behind the steering wheel (and moving with it) is a Formula 1-inspired rocker for changing gears. It has been engineered to deliver a Formula 1 haptic. The science of haptics has been applied to all the controls in order to generate a consistent and high quality feel. All the controls are bespoke, designed exclusively by McLaren, and not a single one has come from the parts bin of another manufacturer.

The Active Dynamics Panel provides two rotary switches and four push buttons:
  •  'Start/Stop'
  •  'Active' activates all the dynamic controls.
  •  'Winter' sets powertrain, suspension and electronic aids to maximum driver support.
  •  'Launch' initiates the launch control system.
  •  The two rotary switches control 'powertrain' and 'handling', each having three position settings for normal, sport and high performance driving modes.
  •  'Powertrain' changes throttle response, gearbox strategy, shift times and impulse (how much one can feel the gearchange). The coaxial 'Manual' button controls use of manual gearbox functions.
  •  'Handling' changes stability control, steering weight, suspension firmness and roll stiffness. The coaxial 'Aero' button allows the driver to deploy the airbrake for increased downforce.

The supportive, light weight seat is comfortable and electrically-adjustable for height. There is plenty of stowage space in the car with a shelf behind the seats big enough for small bags and a 'floating' centre console that leaves space beneath for a large storage container.

The interior's simplicity belies a world-class level of comfort and safety features that will include a full quota of airbags, fully automatic dual zone climate control, sophisticated telematics and audio systems, parking sensors, trip computer, cruise control and electric memory seats.

Testing and simulation
McLaren has developed one of the most sophisticated driving simulators in the world. It is an immensely powerful tool that can be used to predict handling, performance, and a multitude of other dynamic properties.

The simulator was initially designed to improve the performance of the Formula 1 cars. But it has also been used intensively in the design and development process for the 12C, where modelling offers the opportunity to test likely outcomes without having to build a component that might turn out to be inadequate. It saves both money and time and it is perhaps the most effective technology transfer from Formula 1 to road cars; the handling and suspension of the McLaren MP4-12C was developed using exactly the same tools and techniques as the McLaren Formula 1 cars.

The crash test requirements are a good example of how simulation helps speed up development. Long before the first Carbon MonoCell had been constructed, the design had been through hundreds of passive crash test simulations. When the time came to submit a real world crash test, the 12C passed with flying colours.

Simulation didn't stop at the design stage. Although over 20 prototypes have been built for an exhaustive test programme around the globe, the simulator remains a key tool and a differentiator from most competitors.

Different engineering teams have cars undergoing specialized testing including hot weather in Bahrain in the height of the 2009 summer, cold weather testing in the Arctic, engine development, gearbox calibration, electrical testing and ride, handling and durability programmes.

Before the first prototype was available, the dynamic test team, aided by professional racing driver and McLaren test driver Chris Goodwin, tested early parts on the simulator as well as a development chassis and various engine mules. When dynamic testing started, development and constant refinement of engine, gearbox, tyres, aerodynamics, braking, steering and suspension began in earnest to match all projected values and targets.

Production
The production process for the McLaren MP4-12C will enable McLaren to build on its recent success of record production volumes and quality for a luxury supercar with the SLR.
The McLaren Production System brings a large scale lean production mentality into a small-scale, flexible operation. The process is championed by Production Director, Alan Foster's experiences at Japanese and European car manufacturers.

12C volumes will remain low, but will require a change of mindset for McLaren's production line teams as the company moves to higher volumes. But the build process will still focus on craftsmanship, a hand-built philosophy but with a lot of science behind it. Quality gates will ensure that a car cannot leave a work station until everything is completed perfectly.

McLaren will maintain its high standards of final approval before a car can be released.
The build of prototypes has already proven the robustness of this approach because investment in the manufacturing assembly fixtures that will actually be used in production has already prepared the team and shown the build process to be on track. The 12C station cycle times have already been reduced by almost a further 20 per cent through knowledge gained from building the prototypes. In short, the risk has been removed from the production process so that final production quality will be guaranteed.

Aftersales, retail distribution, personalisation
Not only is McLaren establishing a new company, a new production plant, an all-new high performance sports car engineered and developed in house... it is also building a global network of retail distribution partners.

Không có nhận xét nào:

Đăng nhận xét

Bài đăng phổ biến